

Production Report Double-Sided Embedded Copper Block Board (Type A1)

Prepared by: Process Engineering Department Xiao Xiong Date: Jan 05, 2025 Reviewed by: Process Engineering Department Yang Weifeng Date: Jan 2025

1

Table of Contents

Product Basic Information Introduction & Showcase

Key Challenges Identification & Capability Matching Analysis

Actual Product Processing Results

Product Production Summary

I. Product Basic Information Introduction & Showcase

1.1 Product Basic Information

	Basic Pro	oduct Information			
Produc	ct structure	Specification requirements			
thickness	Finished Product	1.15mm±10%			
Layer	Specification	2L			
Size	Specification	Pcs Size: 57.5*53mm Set Size: 240*135mm Pnl Size: 620*344mm			
	Laminate	VT-481			
Material	CORE	1.05mm 1/1oz (Copper Included)			
	Silkscreen Ink	PSR-2000CE887M (Muted Green)			
Lists Trues	Via	Min 0.55mm			
Hole Type	Resin Plug	Yes (Resin-plugged hole with copper post)			
Aspect Ratio	Specification	1.9: 1			
Finished	Surface copper	≥52.9um			
Copper Thickness	Hole Copper	≥25um			
Trace Width and Spacing	Outer Layer	0.3mm/0.3mm			
Surface Finish	Immersion Tin	1.2±0.2um			
Special Processes		1. Embedded Copper Block, Size:5*5mm; 2. Quantity:8/pcs, 8pcs/set; 3. Resin-Filled Copper Block;			

1.2 Finished Product Showcase

II. Key Challenges Identification & Capability Matching Analysis

2.1 Product Design vs. Factory Capability Analysis

ltem	Product Requirements	Factory Capability	Match
Board Thickness	1.15mm+/-10%	Min0.4mm	Yes
Minimum Hole Diameter	0.55mm	min0.2mm	Yes
Hole Wall Copper Thickness	≥25um	≥25um	Yes
Trace Width/Spacing	0.3mm/0.3mm	0.076mm/0.076mm	Yes
Resin-Filled Holes (POFV)	Copper-Filled POFV	No Prior Experience	No
Solder Mask Thickness	Solder Mask Thickness at Trace Edge:5-55um Solder Mask Thickness at Trace Surface:10-55um	Solder Mask Thickness at Trace Edge > 5um Solder Mask Thickness at Trace Surface > 10um	Yes
Immersion Tin	Thickness:1.2+/-0.2um	0.8-1.4um	Yes

II. Key Challenges Identification & Capability Matching Analysis

2.2 Key Challenge Control Plan

Critical and Challenging Projects	Process Control Scheme
	1. After milling FR-4 inner slots, apply pre-plating treatment to remove burrs before resin filling;
	2. Copper blocks require brown oxide treatment prior to insertion, using fixtures + tape masking for process control;
	3. For FR-4 inner slots, maintain 5mil single-side clearance from copper blocks with 1-2 protrusions (4×40mil) per edge;
Desin Filled	4. After milling FR-4 slots, apply heat-resistant brown tape to the bottom surface before placing copper blocks, then compress slightly and laser-drill vent holes;
Resin-Filled Copper Block	5. Vent holes should be designed at 0.1mm diameter, 0.45mm pitch, centered 0.08mm from copper block edges, with at least 1 hole per curved section;
	6. After laser drilling, perform 110°C×30min baking with vertical storage;
	7. Use vacuum stencil printing for resin filling, ensuring resin bleed-through at vent holes, with vertical storage during curing;
	8. After post-curing, remove bottom tape and perform ≤2 cycles of resin grinding, maintaining copper thickness while cleaning resin residue - manual touch-up permitted for localized areas.

3.1 Copper Block Incoming Inspection

-- Thickness

Note: Copper block incoming thickness is controllable within the required range, with a tendency towards the upper-middle range.

3.1 Copper Block Incoming Inspection

-- Dimensions

Note: Copper block incoming dimensions are controllable within the required range, with a tendency towards the upper-middle range.

3.2 FR-4 Inner Slot Routing

Item/Component	Specification(mm)	Tolerance (mm)	实测mm				图示		
Square Slot Dimension	5. 254	±0.075	5. 273	5. 254	5. 259	5.26	5. 268	5. 319	
Card Slot Dimension	5.05	±0.075	5.063	5.068	5.056	5.042	5.063	5.048	

Note: As copper block dimensions are controlled in the upper-middle range, the slot dimension lower control limit must exceed the maximum copper block size. Failure to do so will result in copper blocks failing to fit into the slots.

III. Actual Product Processing Results

3.3 Resin Filling of Copper Blocks

1) Prior to filling, copper blocks undergo brown oxide treatment. Treated blocks are then inserted into the slots. High-temperature-resistant brown tape is applied to the backside.

Copper Block Brown Oxide Fixture

Tape Application Post Copper Block Insertion

2) To facilitate resin filling into the gaps between the copper blocks and surrounding FR-4, laserdrilled vent holes are created in the tape after application.

Vent Hole Laser Parameters

Vent Hole Effect Diagram

3) Screen-printed vacuum resin filling is performed (Shanrong IR-6P resin ink). Due to the small gap size, 4 filling passes are required at a speed of 30mm/s.

菜羊画面 普通板 参数设定 ^{塞孔等待} 塞 孔 手动动能 刮刀当前位置: 353 毫米 塞孔等待无									
覆墨速度	180 毫米/秒	塞孔次数设定	4次						
刮刀速度1	30 毫米/秒	刮刀速度2	50 毫米/秒						
刮刀左压力	7.0 Kgf/cm2	刮刀右压力	7.0 Kgf/cm2						
塞孔起始位置	30 毫米	塞孔结束位置	569 毫米						
塞孔等待时间	15.0 分钟	抬网高度设定	10 毫米						
刮刀下降 停頓时间	0.1 秒	塞孔结束 刮刀停顿时间	0.1 秒						

Resin Bleed-Out Effect at Vent Holes

Resin Filling Parameters

4) After resin filling, panels must be placed flat in the oven (tape side down). Vertical placement is prohibited.

Stage/Step	Temperature (°C)	Time (min)
Stage 1	110	30
Stage 2	155	60

Note: Panel observation post-racking indicates horizontal placement risks panel warping due to copper block weight. Therefore, vertical racking is required.

5) Grinding is performed using sand belt + ceramic + non-woven abrasive brushes. Prior to grinding, the tape is removed. Tape removal pulls out resin beads formed at vent holes, creating pits which require re-filling and re-grinding.

Post-Ceramic Grinding

Post Re-filling + Grinding

6) Flatness: Customer Requirement $< 30 \mu m$

Note: Cross-section analysis post-grinding shows a height differential of approx. 6.78-7.42µm between the copper block and surrounding copper surface, meeting customer requirements.

7) Copper Thickness Measurement

Serial Number	Substrate Copper Thickness (µm)		Measured Value (µm)				min	max	avg	14756-C面		
1		23.60	22.97	23.67	23.47	22.48	22.88				22.55µm	
2	95	22.37	22.31	23.38	24.98	22.60	24.26		04.00.05.7	7 00 0		
3		24.07	22.68	24.68	23.91	25.32	25.04					
4	35	24.55	25.23	24.03	25.70	24.45	25.17		5.7 23.0			
5		22.61	23.06	22.92	24.26	22.32	22.06			14756-S面		
6		23.57	23.64	24.44	23.94	21.99	22.11					
											21.0c.m	

Notes:

1. Post-grinding copper thickness measurement shows a variation of 9.3-13.0 μ m, averaging 11.4 μ m.

2. For similar future products, design copper thickness before resin grinding to 1oz.

3.4 Plating

Product Requirement: Final Surface Copper Thickness 52.9 - 87.9µm (Internal Plating Control: 58 - 70µm). Hole Copper Requirement: 25 - 55µm.

Index		Meas	ured Val	ue (µm)	(CMI)		min	max	avg	Range
1	64.00	64.67	68.57	67.86	63.03	64.11				
2	70.16	69.29	69.98	70.33	69.63	67.22	•		67.89	8.79
3	66.39	67.22	68.08	68.61	67.50	67.66	<u></u>	74.00		
4	69.12	67.06	70.91	71.73	69.63	66.15	63.03	71.82		
5	65.80	65.23	70.64	71.45	63.31	65.68				
6	66.58	70.42	71.82	70.42	66.19	67.42				

Notes:

1. Post-plating CMI measurement confirms surface copper thickness meets requirements.

2. Cross-section at copper block location shows a copper surface height differential of $4.34\mu m$, meeting customer requirement ($<30\mu m$).

3.5 Circuit Imaging

ltem	Specification (mm)	Tolerance (mm)	Μ	easured '	Value (m	m)	Result	Illustration/Diagram		
Line Width		±0.03	0.284	0.280	0.280	0.289	合格			
	0.3		0.278	0.273	0.282	0.275		1050 - 10		
Line Spacing	0.3	±0.03	0.311	0.318	0.315	0.311	合格			
Line Spacing			0.318	0.323	0.315	0.322				
	Min				273		/			
	Мах			0.3	323		/			
	Avg		0.298				/			

III. Actual Product Processing Results

3.6 Solder Mask

Finished solder mask effect at embedded copper block locations is shown below:

3.7 FQC Yield Statistics

Product Yield Summary:

Process	Q	ualified Par	nel	Scrap	Panel	Note	
	PNL	SET	PCS	set	pcs	Note	
Material Feeding	6	24	192	0	0	/	
Drilling	3	12	96	12	96	Employee Drilled 3 Panels in Reverse	
Outer Layer Circuitry	3	9	72	3	10	Scrap Reason: 8pcs/1set Sliced, 2pcs with Poor Resin Filled Holes	
Final Quality Control	/	9	72	0	0		

Summary: Based on process tracking results, excluding 3 PNLs scrapped due to drill reversal (human error), the panel (set) yield is 9/12 = 75%, and the unit (pcs) yield is $86/96 \approx 89.6\%$.

3.8 Reliability Testing

Test Instrumer	Test Method	Test Condition	Test Standard	Inspection Item		Test Result		Judgment
Reflow Soldering	2.6.8 and	A: Select corresponding temperature profile, 8062	A: No delamination, blistering, or plate bursting anomalies; B:	Appearance	No blistering, delamination, or discoloration	No blistering, delamination, or discoloration	No blistering, delamination, or discoloration	Pass
Tester	Soldering Tester Manual	parameter profile; B: Routine pass three times	Sliced copper block position, quality meets requirements	Slice	No corner cracking, fracture, or plate bursting	cracking, fracture, or	No corner cracking, fracture, or plate bursting	Pass

3.8 Reliability Testing

Resistance change measured at the exposed copper block pads after 3 lead-free reflow cycles:

Test Item		Resistance (mΩ)										
		Position 1	Position 2	Position 3	Position 4	Position 5	Position 6	Position 7	Position 8			
Copper	Before IR	6.77	6.59	6.49	6.63	6.58	6.52	6.57	6.57			
Block Resistance	Post-IR (3 Times)	6.55	6.36	6.42	6.53	6.54	6.39	6.07	6.60			
Change \	Change Value		0.23	0.07	0.1	0.04	0.13	0.05	0.03			
Change Ra	Change Rate (%)		3.49%	1.08%	1.51%	0.61%	1.99%	0.76%	0.46%			

IV. Product Production Summary

Preliminary conclusions based on this sample production run:

- 1. Copper block area reliability meets requirements: No delamination, blistering, or cracking observed.
- 2. Height differential between copper block and surrounding copper surface meets the <30 µm requirement.
- 3. Other Engineering Design Recommendations:

1) Routing Slot Location Hole Drill File: Apply pre-scaling coefficient: +0.01% in both X and Y directions. Ensure the drill file includes panel ID holes at the board edge.

TGZ Data: Maintain scaling coefficient at 1:1 (no pre-stretch).

2) Optimize the original resin filling process to double-sided filling. Refer to the updated Control Plan for details.